Clouds in the Met Office models Can ARM CMWG help with our future development? ARM cloud modelling and aerosol meeting Wed Sep 30th Jon Petch Peter Hill, James Manners, Cyril Morcrette #### People - Radiation - James Manners - Peter Hill - Clouds - Cyril Morcrette - Microphysics (see Paul and Adrian's talks) - Paul Field, Adrian Hill and Jonathan Wilkinson #### Contents - What we do with our model - weather through to climate - Radiation (cloudy) - a cloud generator and McICA - Some longer term plans - clouds, radiation, (microphysics & aerosols) - Cloud scheme diagnosis - the sick plots - How ARM CMWG might help # Current atmospheric model configurations What do our parametrizations need to do? #### The operational forecast models #### **Met Office** #### NWP (horizontal grid lengths) • Global: 40 km (25km Dec) Atlantic/Europe: 12 km • UK: 1.5 km Also various ensembles (25ish) at a reduced resolution #### NWP (levels) • Global: 70 Atlantic/Europe: 70 • UK: 70 (might go to 110) #### Longer time scales #### **Horizontal resolution** - Climate (global): 60 140 km - Seasonal (global) 120 km (perturbed physics and new I.C run every 2 days) - 15 days: **90 km** (soon 40 km) - Regional climate 12 30 km #### **Vertical levels** 63-80 typically (same res in troposphere) # T+21: 9pm 2 Sep 2009 UKV & NAE ## T+21: 9pm 2 Sep 2009 UKV & Global # Radiation: cloud generator and McICA #### McICA & generated cloud #### McICA & generated cloud Introduction of McICA method: Pincus, Barker & Morcrette 2003 JGR, 108, 4376 A simple cloud generator: Raisanen et al. 2004 QJRMS, 130, 2047 Effect of generated cloud and McICA noise in GCMs: NCAR CAM: Raisanen et al. 2005 J. Climate, 18, 4715 GFDL-AM2: Pincus et al. 2006 MWR, 134, 3644 ECHAM5-FMI: Raisanen et al. 2008 QJRMS, 134, 481 CCCma/GEM: Barker et al. 2008 QJRMS, 134, 1463 **ECMWF:** Morcrette et al. 2008 MWR, **136**, 4760 #### Sampling generated cloud using McICA #### Reducing the noise in McICA - choosing our k-terms carefully Surface shortwave fluxes from 1000 runs of the same cloud scene ## Minimising McICA noise – ensuring the key k-terms in the LW and SW 'see' similar clouds Clouds generally cause heating in the SW and cooling in the LW. When the plane-parallel total (SW+LW) effect is calculated, errors can cancel. This cancellation does not necessarily occur for McICA if the SW and LW 'see' independent random columns. A free tweak is to match choice of columns in LW and SW for main terms. ## McICA noise in the climate model Noise causes a change in some convection and BL type indicators #### The cloud generator would need regional variations to hit observed biases tuned overlap and variability assumptions # Strategy for clouds – radiation and microphysics # Strategy for clouds – radiation and microphysics # Strategy for clouds – radiation and microphysics #### The cloud scheme QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 134: 2093–2107 (2008) Published online 12 November 2008 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/qj.333 #### PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description Damian R. Wilson, Andrew C. Bushell, Amanda M. Kerr-Munslow, Jeremy D. Price and Cyril J. Morcrette* Met Office, Exeter, UK. N processes $\Delta Cf = \sum \Delta Cf_i$ i=1N processes $\Delta qI = \sum \Delta qI_i$ i=1 ### PC2: A Beginner's Guide (Prognostic Cloud, Prognostic Condensate) What are the processes which lead to our cloud water contents? With PC2 we can answer this question: - Profiles - Cross sections - Global means - Global maps - •Sick maps # **Met Office** #### **Profiles: Tropical Warm Pool** TWP-ICE region for Dec-Jan-Feb **Shortwave** Longwave **Boundary-layer Erosion Microphysics** Convection Advection Initialization **Pressure** change **Total** #### Vertically integrated process rates ## JJA: <u>Proportion</u> of LWP increment from each source Convection Pressure change Initialization Long-wave Boundary-layer Advection Numerical checks ## **DJF**: Proportion of LWP increment from each source Convection Pressure change Initialization Long-wave Boundary-layer Advection Numerical checks #### Summary/ARM help #### **Summary** - We plan to make the make use of the cloud scheme terms and other physics in the cloud generator as well as in the development of PC2 itself - We plan to try microphysics on the generated cloud #### ARM help... - Collaboration on work to evaluate the process rates in CRM/LES? - Evaluation of process rates from observations??? #### PC2 increment analysis for RICO Convective detrainment Erosion Microphysics LW rad SW rad BL turbulence Dynamics #### The end #### Aerosol schemes in the UM The UM currently includes a choice of two different aerosol schemes: #### CLASSIC • "First generation" scheme, developed over the last 15 years. Models aerosol mass only, with fixed size and composition. #### UKCA-MODE Replacement scheme under development in collaboration with the University of Leeds. Models aerosol mass and number, with variable size and composition. #### Aerosol species included - Ammonium sulphate (Sources: anthro & natural SO₂, DMS) - Ammonium nitrate (Sources: anthro & natural NH₃, HNO₃) - Black carbon (Sources: biomass burning, fossil fuels and biofuels) - Primary & Secondary Organic carbon (Sources: as BC, plus terpenes) - Mineral dust - Sea-salt ## Aerosol representation in CLASSIC #### Prognostic: - Sulphate (3 log-normal modes) - Nitrate (2 log-normal modes) - Biomass-burning BC/OC (3 log-normal modes) - Fossil & bio-fuel BC (3 log-normal modes) - Fossil & bio-fuel OC (3 log-normal modes) - Mineral dust (6 size sections) #### Diagnostic: • Sea-salt: $f(u_{10})$ (2 log-normal modes) #### Climatology: # Modelled as an external mixture ## Aerosol representation in UKCA-MODE | Mode name | Size range | Composition | Soluble? | |------------|--------------------|--------------------|----------| | nucl-sol | r < 5 nm | SU | Yes | | Aitken-sol | 5 < r < 50 nm | SU, BC, OC | Yes | | accum-sol | 50 nm < r < 500 nm | SU, BC, OC, SS, DU | Yes | | coarse-sol | r > 500 nm | SU, BC, OC, SS, DU | Yes | | Aitken-ins | 5 < r < 50 nm | BC, OC | No | | accum-ins | 50 nm < r < 500 nm | DU | No | | coarse-ins | r > 500 nm | DU | No | (Nitrate not yet implemented) # Modelled as internally mixed modes #### Aerosol effects in the UM Direct effect (and therefore semi-direct effect) of all aerosols 1st (albedo) and 2nd (precip. efficiency) indirect effects on liquid water clouds (soluble aerosols only) No effects on ice clouds included ## Parameterization of droplet number concentration #### CLASSIC Empirical scheme based purely on aerosol mass, treated as an *external mixture*: $N_d = f$ (accumulation modes of SO₄, NO₃, OC & SS) Cannot distinguish between different aerosol types. #### UKCA-MODE Mechanistic parameterization being developed at Oxford University: uses information on aerosol number, size and composition of *internally mixed* aerosols. # Impact of geoengineered increases of droplet number in the three principal marine stratocumulus regions (Only changes significant at 5% level shown) 3 0 #### Land precip. (mm day⁻¹) Jones et al. (2009), JGR 114, D10106